由于一个圆的内接正n边形和外切正n边形,当边数无限倍增时,一系列的内接正多边形的周的长度构成一无穷递增数列,一系列的外切正多边形的周的长度构成一无穷递缩数列,这两数列有相同的极限。这样,就以此极限定义为圆周长度。
同样,两系列的多边形的面积也分别构成一无穷递增数列和一无穷递缩数列。这两数列也有相同极限。这样,就以此极限定义为圆的面积。
原创 | 2022-11-24 12:51:40 |浏览:1.6万
由于一个圆的内接正n边形和外切正n边形,当边数无限倍增时,一系列的内接正多边形的周的长度构成一无穷递增数列,一系列的外切正多边形的周的长度构成一无穷递缩数列,这两数列有相同的极限。这样,就以此极限定义为圆周长度。
同样,两系列的多边形的面积也分别构成一无穷递增数列和一无穷递缩数列。这两数列也有相同极限。这样,就以此极限定义为圆的面积。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com