拉氏变换,即为拉普拉斯变换傅氏变换,即为傅里叶变换。
一、拉普拉斯变换与傅里叶变换的联系
拉普拉斯变换是傅里叶变换的推广,是一种更普遍的表达形式。在进行信号与系统的分析过程中,可以先得到拉普拉斯变换这种更普遍的结果,然后再得到傅里叶变换这种特殊的结果。
二、拉普拉斯变换与傅里叶变换的区别
1、提出时间不同
拉普拉斯变换:拉普拉斯变换是1812年提出的。
傅里叶变换:傅里叶变换是1807年提出的。
2、应用学科不同
拉普拉斯变换:拉普拉斯变换的应用学科是数学、工程数学。
傅里叶变换:傅里叶变换的应用学科是数字信号处理。
3、适用领域范围不同
拉普拉斯变换:拉普拉斯变换的适用领域范围是信号系统、电子工程、轨道交通、自动化等。
傅里叶变换:傅里叶变换的适用领域范围是电工学、信号处理。
拉氏变换与傅里叶变换的区别
傅里叶变换是拉氏变换的特例,傅氏变换是乘上一个“纯虚数”,就是e^-iwt的指数只是个纯虚数-iwt,而拉氏变换的指数是个复数e^a-iwt